Direct radiative forcing and atmospheric absorption by boundary layer aerosols in the southeastern US: model estimates on the basis of new observations

نویسندگان

  • Shaocai Yu
  • Charles S. Zender
  • V. K. Saxena
چکیده

In an effort to reduce uncertainties in the quantification of aerosol direct radiative forcing (ADRF) in the southeastern United States (US), a field column experiment was conducted to measure aerosol radiative properties and effects at Mt. Mitchell, North Carolina, and at an adjacent valley site. The experimental period was from June 1995 to mid-December 1995. The aerosol optical properties (single scattering albedo and asymmetry factor) needed to compute ADRF were obtained on the basis of a procedure involving a Mie code and a radiative transfer code in conjunction with the retrieved aerosol size distribution, aerosol optical depth, and diffuse-to-direct solar irradiance ratio. The regional values of ADRF at the surface and top of atmosphere (TOA), and atmospheric aerosol absorption are derived using the obtained aerosol optical properties as inputs to the column radiation model (CRM) of the community climate model (CCM3). The cloud-free instantaneous TOA ADRFs for highly polluted (HP), marine (M) and continental (C) air masses range from 20.3 to 24.8, 1.3 to 10.4, and 1.9 to 13.4Wm , respectively. The mean cloud-free 24-h ADRFs at the TOA (at the surface) for HP, M, and C air masses are estimated to be 8 4 ( 33 16), 7 4 ( 13 8), and 0.14 0.05 ( 8 3) Wm , respectively. On the assumption that the fractional coverage of clouds is 0.61, the annual mean ADRFs at the TOA and the surface are 2 1, and 7 2Wm , respectively. This also implies that aerosols currently heat the atmosphere over the southeastern US by 5 3Wm 2 on annual timescales due to the aerosol absorption in the troposphere. # 2001 Elsevier Science Ltd. All rights reserved.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Satellite-derived direct radiative effect of aerosols dependent on cloud cover

Aerosols from biomass burning can alter the radiative balance of the Earth by reflecting and absorbing solar radiation1. Whether aerosols exert a net cooling or a net warming effect will depend on the aerosol type and the albedo of the underlying surface2. Here, we use a satellite-based approach to quantify the direct, top-of-atmosphere radiative effect of aerosol layers advected over the partl...

متن کامل

Revealing the impact of changing land use of the annual spatiotemporal boundary layer height (Kermanshah Case Study)

Introduction Atmospheric boundary layer (ABL), is the lowest part of the atmosphere. Its behavior is directly influenced by its contact with earth surface. On earth it usually responds to changes in surface radiative forcing in an hour or less. In this layer physical quantities such as flow velocity, temperature, moisture, etc., display rapid fluctuations (turbulence) and vertical mixing is st...

متن کامل

Radiative forcing by aerosols as derived from the AeroCom present-day and pre-industrial simulations

Nine different global models with detailed aerosol modules have independently produced instantaneous direct radiative forcing due to anthropogenic aerosols. The anthropogenic impact is derived from the difference of two model simulations with prescribed aerosol emissions, one for present-day and one for pre-industrial conditions. The difference in the solar energy budget at the top of the atmos...

متن کامل

Sensitivity of nocturnal boundary layer temperature to tropospheric aerosol surface radiative forcing under clear‐sky conditions

[1] Since the middle of the last century, global surface air temperature exhibits an increasing trend, with nocturnal temperatures increasing at a much higher rate. Proposed causative mechanisms include the radiative impact of atmospheric aerosols on the nocturnal boundary layer (NBL) where the temperature response is amplified due to shallow depth and its sensitivity to potential destabilizati...

متن کامل

Sensitivity of Nocturnal Boundary Layer to Tropospheric Aerosol Radiative Forcing Under Clear Sky Conditions

1 2 Since the middle of the last century, global surface air temperature exhibits an increasing trend, 3 with nocturnal temperatures increasing at a much higher rate. Proposed causative mechanisms 4 include the radiative impact of atmospheric aerosols on the nocturnal boundary layer (NBL) 5 where the temperature response is amplified due to shallow depth and its sensitivity to potential 6 desta...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2001